
Simulink® Design Verifier™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Verifier™ Release Notes
© COPYRIGHT 2007–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2018a

Incremental Test Generation for Generated Code: Generate
additional tests from within the Test Manager to increase
coverage of code generated by Embedded Coder 1-2

Dead Logic Refinement for Model Slicer: Improve model slice
generation by using static analysis . 1-2

Export-Function Models: Analyze export-function models
driven by scheduler . 1-2

Precision Improvements: Reduce rational approximations for
model analysis . 1-2

Test Generation: Avoid run-time errors by using test case
refinement . 1-3

Minimum and maximum constraints specified on unused input
signals . 1-3

Lookup Tables: Use enumerated data types 1-3

R2017b

Model Slicer: Investigate and refine active slice-time windows
with the Model Slicer Data Inspector 2-2

Modeling Support for Secure Coding Standards: Check model
for compliance with secure coding requirements in CERT C,

iii

Contents

CWE, ISO/IEC TS 17961 standards to improve security of
generated code . 2-2

Multiword Support: Analyze models containing multiword
fixed-point data types up to 128 bits 2-3

Side-Effect-Free Behavior for Design Error
Detection Checks . 2-3

Result highlighting on the model during analysis 2-5

Model Slicer: Use Model reference block as slicing
context . 2-5

Impact of approximation reported for individual objective
status . 2-5

Fast Restart Mode: Identify presence of approximation effect
s . 2-6

R2017a

Activity-Based Time Slicing: Visualize the effect of state
activity timing on Model Slicer highlighting for
simulations . 3-2

Bus Element Port Support: Detect design errors, generate
tests, and prove properties for models containing Bus
Element ports . 3-2

Incremental Test Generation: Generate additional tests from
within the Test Manager to increase coverage 3-2

Improved Analysis Startup Time: Continue analysis after
compatibility check . 3-2

Use Subsystem Inport and Outport blocks as starting points
for Model Slicer . 3-2

iv Contents

Refined sldvextract behavior for models with Data Store
Memory blocks . 3-3

Interpret verify() statements as proof objectives for Simulink
Design Verifier analysis . 3-6

Respect the value of the Simulink Verification and Validation
CovLogicBlockShortCircuit model parameter during
Simulink Design Verifier analysis . 3-6

R2016b

Model Slicer for Stateflow: Highlight active states and
transitions for specified simulation time window 4-2

Model Slicer: Highlight unexpected behavior in test harnesses
created by Simulink Test . 4-2

MCDC Test Generation: Generate tests from MCDC coverage
for cascaded Simulink logic blocks . 4-2

Incremental Test Generation: Generate tests to increase
coverage for model objects in a test harness 4-2

Dead Logic Detection: Precisely detect dead logic without
rational approximations . 4-2

Detect Run-Time Errors in Supported S-Functions 4-3

Generate Tests for Relational Boundary Code Coverage for
Supported S-Functions . 4-3

Analyze Models that Contain Cell Arrays 4-3

Detect Dead Logic Only without Floating-Point to Rational
Number Conversion Approximation or While Loop
Approximation . 4-3

v

R2016a

Test Generation: Automatically generate tests for C/C++ S-
Functions . 5-2

Model Slicer: Time window adjustment without the need to
rerun simulations . 5-2

Variant Reducer: Create sliced models based on active variant
configurations . 5-2

Overflow Detection: Automatically find overflow errors for
fixed-point types with nonstandard word length 5-2

Simulink Functions: Perform verification of models that
contain Simulink Functions . 5-2

Report Generation: Generate analysis reports in PDF
format . 5-3

Model Slicer: Slice by using nonzero start time for
simulation time window . 5-3

Model Slicer: Support for root-level inports as starting points
for downstream highlighting . 5-3

R2015aSP1

Bug Fixes

R2015b

Analysis of C S-functions . 7-2

vi Contents

Model Slicer API . 7-2

Analyze minimum and maximum ranges specified for
bus elements . 7-2

Model Advisor checks for design error detection 7-2

Test Generation Advisor improvements 7-2

Generate test inputs and export them to test cases in Simulink
Test . 7-2

Support for Discrete Filter Blocks and Discrete Transfer Fcn
Blocks . 7-3

R2015a

Isolate important model content and reduce model complexity
based on design interests with Model Slicer 8-2

Load results from previous Test Generation Advisor
analysis . 8-2

“Parameter table” replaces “Parameter configuration
table” . 8-2

R2014b

Test generation for relational boundary values 9-2

Fast dead logic detection and Model Advisor check 9-2

Analysis for arrays of buses, For Each block, and For Each
Subsystem block . 9-3

vii

Test Generation Advisor to guide component analysis 9-3

Improved test generation performance for lookup tables and
timers . 9-4

R2014a

Parameter Configuration Table for constraint specification and
management . 10-2

Compatibility check integrated with Model Advisor 10-2

Condition coverage test generation for Relational Operator
blocks . 10-2

For Each Subsystem block analysis . 10-2

Parameter handling for Simulink data dictionary 10-3

Japanese language localization support 10-3

R2013b

Highlighting of partial results in model during analysis for
visualizing progress . 11-2

Summarizing and highlighting of prior analysis results 11-2

Performance improvements for test generation with input
constraints . 11-2

Analysis time information for objectives in results window,
report, and data file . 11-2

Mac i64 support . 11-3

viii Contents

Improved while loop bound detection 11-3

Internationalization support for Simulink Design Verifier
Options pane . 11-4

Additional status information for undecided objectives 11-4

Example of property proving using Truth Table 11-4

Continuous state-space block family not stubbable 11-4

R2013a

Detection of out-of-bound array access design errors 12-2

R2012b

Support for Discrete Filter Blocks and Discrete Transfer Fcn
Blocks . 13-2

R2012a

Design Error Detection For Dead Logic 14-2

Filtering Model Objects From Model Coverage 14-2

Improved Property Proving For Look-Up Tables 14-2

ix

R2011b+

sldvtimer Function Available For Generating Test Cases 15-2

R2011b

Checking Specified Design Minimum and
Maximum Values . 16-2

Improved Support for Trigonometric Functions 16-2

Improved Support for Large Lookup Tables 16-2

Optimized Handling for Extending Existing Test Cases 16-2

Support for Trigger and Enable Ports for Model Blocks 16-2

Changed Format for sldvruntest and sldvruncgvtest
Output . 16-2

Conversion of Error and Warning Message Identifiers 16-3

R2011a

Automatic Detection of Overflow and Divide-by-Zero
Design Errors . 17-2

Improved Analysis Results Workflow . 17-2

Improved Support for Nonlinear Arithmetic and Math
Operations . 17-2

x Contents

New Capability to Highlight Analysis Results on the
Model . 17-3

New Capability to Review Model Analysis Results in Model
Explorer . 17-3

New Temporal Operator Blocks . 17-4

Support for Simulink Blocks . 17-4

R2010bSP1

Bug Fixes

R2010b

Support for 64-Bit Windows Operating Systems 19-2

New Support for Specified Input Minimum and Maximum
Values as Analysis Constraints . 19-2

New Built-In Support for Automating Test Execution in SIL/PIL
Mode via the CGV API . 19-2

New Support for Extracting and Analyzing Stateflow Atomic
Subcharts . 19-2

New Capability to Eliminate Unused Signals from the
Generated Harness . 19-3

Support for Simulink Blocks . 19-3

sldvlogsignals Replaces sldvlogdata . 19-3

sldvmergeharness Replaces sldvharnessmerge 19-4

xi

R2010a

Generate Test Cases for Missing Coverage Data 20-2

sldvlogdata Function for Logging Test Cases During
Simulation . 20-2

Extend Existing Test Cases . 20-2

Demo Library and Models to Support Temporal Properties
Specification . 20-3

Support for Stateflow Absolute-Time Temporal Logic
Operators . 20-3

Support for Simulink Blocks . 20-3

R2009bSP1

Bug Fixes

R2009b

New Functions for Verification Objectives
and Constraints . 22-2

Support for Enumerated Signals and Parameters 22-3

New Option to Stop Simulation on Proof Violation 22-3

New sldvmakeharness Function . 22-3

New sldvreport Function . 22-3

xii Contents

New Support for Simulink Blocks . 22-3

Support for New Blocks . 22-4

R2009a

Automatic Stubbing for Unsupported Operations 23-2

Long Test Case Optimization . 23-2

New Support for Blocks . 23-2

Analyzing External Functions for Embedded MATLAB Function
Blocks . 23-3

Enhanced Block Replacement Capability for Subsystems and
Model Blocks . 23-3

New Implies Block . 23-3

New Property-Proving Examples and Demos 23-3

sldvisactive Function . 23-4

R2008b

Simulink Bus Signals and Bus Objects Support 24-2

Fixed-Point Data Support . 24-2

Generating Test Harness Model with Model Reference 24-2

Generating SystemTest TEST-File . 24-2

xiii

Improved Search Algorithms . 24-3

New Data File Format . 24-3

New HTML Report . 24-4

Blocks with No Input Ports Limitation 24-4

R2008a+

Bug Fixes

R2008a

Embedded MATLAB Subset Support . 26-2

Enhanced Support for Stateflow Truth Tables 26-2

New Simulink Design Verifier Data File Options 26-2

New Test Suite Optimization Setting . 26-2

R2007b+

Bug Fixes

xiv Contents

R2007b

Fixed-Point Data Type Support . 28-2

R2007a+

Introducing the Simulink Design Verifier Software 29-2

xv

R2018a

Version: 3.5

New Features

Compatibility Considerations

1

Incremental Test Generation for Generated Code: Generate
additional tests from within the Test Manager to increase
coverage of code generated by Embedded Coder
If you have Simulink® Test™, you can generate tests to achieve additional coverage for
code generated with Embedded Coder® from the coverage results pane in the Test
Manager. After executing tests, view the cumulative coverage results in the Test Manager
results pane. Select the coverage result and click Add Tests for Missing Coverage.

For more information, see “Generate Test Cases for Embedded Coder Generated Code”
and “Code Coverage Test Generation”.

Dead Logic Refinement for Model Slicer: Improve model slice
generation by using static analysis
In R2018a, you can analyze a model slice by refining the dead logic. Use existing Simulink
Design Verifier™ data file to highlight and refine the functional dependencies without
resimulating the model. For more information, see “Refine Dead Logic for Dependency
Analysis”.

Export-Function Models: Analyze export-function models
driven by scheduler
In R2018a, you can run a Simulink Design Verifier analysis on export-function models that
are driven by a scheduler. For more information, see “Analyze Export-Function Models”.

Precision Improvements: Reduce rational approximations for
model analysis
When you analyze models for test case generation, property proving, or dead logic
detection, Simulink Design Verifier attempts to reduce the use of rational approximation if
the model uses single-precision floating-point values but no double-precision floating-
point values. You can disable this feature from the Design Verifier Pane of the model
configuration parameters.

For more information on how Simulink Design Verifier introduces approximations, see
“Floating-Point to Rational Number Conversion”.

R2018a

1-2

Test Generation: Avoid run-time errors by using test case
refinement
If division by zero or an array out-of-bounds read or write is possible in your model,
Simulink Design Verifier satisfies more objectives by generating test cases without
division by zero or array out-of-bounds errors.

Compatibility Considerations
In R2018a, if division by zero or an array out-of-bounds read or write is possible in your
model, the test or proof objective status might be reported as satisfied or falsified,
respectively. Prior to R2018a, these objectives might have been reported as Undecided
Due to Division by Zero or Undecided Due to Runtime Error.

Minimum and maximum constraints specified on unused input
signals
For test case generation, Simulink Design Verifier considers the minimum and maximum
constraints specified on the unused input signals. For more information, see “Minimum
and Maximum Input Constraints”.

Compatibility Considerations
Before R2018a, if your model contained unused input signals with minimum and
maximum constraints, simulating the generated test cases produced an error or warning
indicating the constraint violation.

Lookup Tables: Use enumerated data types
In lookup tables, Simulink Design Verifier software now supports n-D Lookup Table and
Prelookup blocks for enumerated parameters, constants, and inputs.

1-3

R2017b

Version: 3.4

New Features

Bug Fixes

Compatibility Considerations

2

Model Slicer: Investigate and refine active slice-time windows
with the Model Slicer Data Inspector
In R2017b, you can use the Model Slicer Data Inspector to:

• Inspect logged signals after model simulation as a part of the Model Slicer workflow.
• Specify the simulation time interval by using the graphical plot to refine the

highlighted model.

For more information, see Refine Highlighted Model Slice by Using Model Slicer Data
Inspector.

Modeling Support for Secure Coding Standards: Check model
for compliance with secure coding requirements in CERT C,
CWE, ISO/IEC TS 17961 standards to improve security of
generated code
The checks in the Model Advisor for design error detection are included as part of a new
set of checks designed to check the model or subsystem for compliance with secure
coding requirements in CERT C, CWE, and ISO/IEC TS 17961 standards. To execute these
checks, Select and Run Model Advisor Checks and select By Task > Modeling
Guidelines for Secure Coding (CERT C, CWE, ISO/IEC TS 17961).

The following table summarizes the checks.

Check Description Addresses Secure
Coding Standards

Detect Dead Logic Identifies logic that stays inactive
during simulation.

• CERT C, MSC07-C
• CWE, CWE-561

Detect Integer Overflow Identifies operations that exceed
the data type range for integer or
fixed-point operations.

• ISO/IEC TS 17961:
2013, intoflow

• CERT C, INT30-C
and INT32-C

• CWE, CWE-190

R2017b

2-2

https://www.mathworks.com/help/releases/R2017b/sldv/ug/model-slicer-data-inspector.html
https://www.mathworks.com/help/releases/R2017b/sldv/ug/model-slicer-data-inspector.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/select-and-run-model-advisor-checks.html
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_5b2e3833-1de0-456f-b809-0fc85b70b8fb
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_b04e75b1-a0b5-4ec6-b340-7ba1c2337642

Check Description Addresses Secure
Coding Standards

Detect Division by Zero Identifies operations in the model
that cause division-by-zero errors.

• ISO/IEC TS 17961:
2013, diverr

• CERT C, INT33-C
and FLP03-C

• CWE, CWE-369
Detect Out Of Bound Array
Access

Detects operations that access
outside the bounds of an array
index

• ISO/IEC TS 17961:
2013, invptr

• CERT C, ARR30-C
• CWE, CWE-118

Detect Violation of Specified
Minimum and Maximum
Values

Checks the specified minimum and
maximum values (the design
ranges) on intermediate signals
throughout the model and on the
output ports. If the analysis detects
that a signal exceeds the design
range, the results identify where in
the model the errors occurred.

• CERT C, API00-C
• CWE, CWE-628

For information about the secure coding standards organizations, see Secure Coding
Standards.

Multiword Support: Analyze models containing multiword
fixed-point data types up to 128 bits
Simulink Design Verifier now supports multiword fixed-point data types up to 128 bits.

Side-Effect-Free Behavior for Design Error Detection Checks
Before R2017b, run-time design error checks (excluding dead logic) could have side
effects on other downstream checks. This behavior caused upstream design errors to
mask cascaded effects downstream, resulting in Simulink Design Verifier reporting a
lower number of error objectives than actually occurred.

In R2017b, downstream design error checks are unaffected by upstream design errors.
Consequently, in designs where such cascaded side effects previously existed, you might

2-3

https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_e6fde9a7-ef76-4252-a218-679d9f22cdca
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_95d8bb7e-5852-4103-999b-9759d84f4942
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_95d8bb7e-5852-4103-999b-9759d84f4942
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_7813475d-f7f2-4d02-8afe-53ec3b9bd916
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_7813475d-f7f2-4d02-8afe-53ec3b9bd916
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_7813475d-f7f2-4d02-8afe-53ec3b9bd916
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/developing-models-and-code-that-comply-with-secure-coding-standards.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/developing-models-and-code-that-comply-with-secure-coding-standards.html

see more reported error objectives than those reported before R2017b. For more
information, see Highlighted Results on the Model.

When you debug counter-examples in simulation, set the relevant Diagnostics model
configuration parameters to warning instead of error so that all errors are flagged
without halting the simulation.

Compatibility Considerations
Simulink Design Verifier analysis and highlighting behavior for models with multiple
design errors might be different in R2017b than in previous releases.

• Some objects with design errors that are downstream of other design errors, or which
rely on the results of objects with design errors, are now analyzed without side effects
from the upstream design errors. Before R2017b, such objects could have been shown
as valid. To simplify the debugging of cascaded errors, fix upstream design errors first.

• Derived ranges now report the actual computed range without considering any
impacts or side effects of violated design errors, including Check specified
intermediate minimum and maximum values. Derived ranges now match the
results from prior releases for design error detection with all design error checks
disabled.

• Because the number of actual reported design errors for a model might increase
compared with releases before R2017b, you might see an increased number of
reported design errors for a model when you run Simulink Design Verifier analysis as
compared with previous releases. This increased number of errors also results in an
increased number of test cases for the reported design errors.

Consider the following model, which contains specified minimum and maximum values
and two subsequent design errors:

The results of design error detection analysis for this model for Check specified
minimum and maximum values are different for R2017b than for prior releases. In
R2017a and earlier, the Gain block shows no design errors, even though the computed
value for its output exceeds 65. This occurs due to a side effect of the Abs block, which
restricts its output range to [0..30]:

R2017b

2-4

https://www.mathworks.com/help/releases/R2017b/sldv/ug/highlighted-results-on-the-model.html

In R2017b, the downstream design error check is unaffected by the upstream design
error, so the Gain block correctly shows a design error:

Result highlighting on the model during analysis
In R2017b, Simulink Design Verifier highlights the model objects automatically during
analysis. When the software updates the objective status, the model blocks are
highlighted. See Highlight Results on Model Automatically.

Model Slicer: Use Model reference block as slicing context
In R2017b, you can create a slice of a referenced model for debugging and refinement.
See Isolate Referenced Model for Functional Testing.

Impact of approximation reported for individual objective
status
In R2017b, Simulink Design Verifier identifies the presence of approximation effects and
reports them for individual objective status. See Reporting Approximations Through
Validation Results.

Compatibility Considerations
In R2017b, Simulink Design Verifier report and highlighting status can differ from
previous releases.

• The objectives that approximations impact are marked with a different status when
compared to previous releases. For example, for test generation analysis, if the
software identifies an objective that approximations impact, the objective status is
marked as Undecided with test case. In releases before R2017b, this objective can be
marked as Satisfied. For more information see, Objectives Status Chapters.

2-5

https://www.mathworks.com/help/releases/R2017b/sldv/ug/highlighted-results-on-the-model.html#bswpih1-1
https://www.mathworks.com/help/releases/R2017b/sldv/ug/isolate-model-components-for-functional-testing.html#mw_37a7ab54-d7c3-4a2d-8243-d8b0c278c719
https://www.mathworks.com/help/releases/R2017b/sldv/ug/reporting-approxiamtions-through-validation-results.html
https://www.mathworks.com/help/releases/R2017b/sldv/ug/reporting-approxiamtions-through-validation-results.html
https://www.mathworks.com/help/releases/R2017b/sldv/ug/simulink-design-verifier-reports.html#bq9oel8

• The objectives that approximations impact are highlighted in orange. For more
information see, Orange Highlighting on Model.

Fast Restart Mode: Identify presence of approximation effects
In R2017b, during analysis, Simulink Design Verifier locks the model in fast restart mode.
The model is simulated to identify the presence of approximation effects. See Reporting
Approximations Through Validation Results.

R2017b

2-6

https://www.mathworks.com/help/releases/R2017b/sldv/ug/highlighted-results-on-the-model.html#bswphw2-1
https://www.mathworks.com/help/releases/R2017b/sldv/ug/reporting-approxiamtions-through-validation-results.html
https://www.mathworks.com/help/releases/R2017b/sldv/ug/reporting-approxiamtions-through-validation-results.html

R2017a

Version: 3.3

New Features

Bug Fixes

Compatibility Considerations

3

Activity-Based Time Slicing: Visualize the effect of state
activity timing on Model Slicer highlighting for simulations
Visualize the effect of Stateflow® states and transitions on model simulation using Model
Slicer. You can constrain the Model Slicer highlighting to the simulation intervals in which
selected states and transitions are simultaneously active. For more information, see
Highlight Active Time Intervals by Using Activity-Based Time Slicing and Using Model
Slicer with Stateflow.

Bus Element Port Support: Detect design errors, generate
tests, and prove properties for models containing Bus
Element ports
Simulink Design Verifier now supports design error detection, test generation, and
property proving for models containing In Bus Element and Out Bus Element ports.

Incremental Test Generation: Generate additional tests from
within the Test Manager to increase coverage
If you have Simulink Test, you can generate tests to achieve additional coverage from the
coverage results pane in the Test Manager. After executing tests, view the cumulative
coverage results in the Test Manager results pane. Select the coverage result and click
Add Tests for Missing Coverage. For an example, see Perform Functional Testing and
Analyze Test Coverage.

Improved Analysis Startup Time: Continue analysis after
compatibility check
After you perform a Simulink Design Verifier compatibility check on a model, you can
continue Simulink Design Verifier design error detection, test generation, or property
proving from the compatibility check window.

Use Subsystem Inport and Outport blocks as starting points
for Model Slicer
You can use Model Slicer to highlight functional dependencies in models by using
Subsystem Inport and Outport blocks as starting points. You can use Model Slicer to

R2017a

3-2

https://www.mathworks.com/help/releases/R2017a/sldv/ug/highlight-and-slice-active-time-intervals-using-activity-based-time-slicing.html
https://www.mathworks.com/help/releases/R2017a/sldv/ug/using-model-slicer-with-stateflow.html
https://www.mathworks.com/help/releases/R2017a/sldv/ug/using-model-slicer-with-stateflow.html
https://www.mathworks.com/help/releases/R2017a/sldv/ug/functional-testing-and-coverage-analysis.html
https://www.mathworks.com/help/releases/R2017a/sldv/ug/functional-testing-and-coverage-analysis.html

generate a model slice by using a Subsystem Outport block as a starting point and setting
the signal propagation to upstream.

Refined sldvextract behavior for models with Data Store
Memory blocks
If you use sldvextract on a subsystem which references Data Store Memory blocks
which are not defined within the subsystem itself, Simulink Design Verifier inserts
corresponding Data Store Memory blocks into the extracted model. Simulink Design
Verifier also inserts Data Store Write or Data Store Read blocks and inports or outports
into the extracted model depending on the contents of the subsystem to be extracted.
Consider the following example for more detailed information.

A model contains a Data Store Memory block A, and a subsystem.

Using sldvextract on this subsystem results in different Simulink Design Verifier
behaviors depending on the contents of the subsystem:

• The subsystem to be extracted contains Data Store Read blocks, but does not contain
any Data Store Write blocks.

3-3

Simulink Design Verifier inserts corresponding Data Store Write blocks with inports
into the extracted model.

• The subsystem to be extracted contains Data Store Write blocks, but does not contain
any Data Store Read blocks.

R2017a

3-4

Simulink Design Verifier inserts corresponding Data Store Read blocks with outports
into the extracted model.

• The subsystem to be extracted contains both Data Store Write and Data Store Read
blocks.

Simulink Design Verifier inserts corresponding Data Store Write blocks with inports
into the extracted model.

3-5

Interpret verify() statements as proof objectives for Simulink
Design Verifier analysis
If your model or test harness contains a Simulink Test verify() statement in a Test
Assessment or Test Sequence block, Simulink Design Verifier property proving analysis
interprets the verify() statement as a proof objective. This allows your verify()
statements to be used for both functional testing and formal analysis, without having to
add Proof Objective blocks to the model. Also, for verify() statements falsified, you can
create counterexamples that falsify the objective during simulation. For more information
about property proving, see Prove Properties in a Model. For more information about
verify() statements, see Assess Simulation Using Logical Statements.

Respect the value of the Simulink Verification and Validation
CovLogicBlockShortCircuit model parameter during Simulink
Design Verifier analysis
Simulink Design Verifier can consider logic blocks as short-circuiting during analysis,
depending on the value you set for the Simulink Verification and Validation™
CovLogicBlockShortCircuit Model Parameters. For more information, see Logic
Operations Short-Circuiting.

Compatibility Considerations
Prior to R2017a, Simulink Verification and Validation considered all logic blocks as short-
circuiting. When the Simulink Verification and Validation CovLogicBlockShortCircuit

R2017a

3-6

https://www.mathworks.com/help/releases/R2017a/sldv/ug/prove-properties-in-a-model.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/assess-simulation-using-logical-statements.html
https://www.mathworks.com/help/releases/R2017a/simulink/slref/model-parameters.html
https://www.mathworks.com/help/releases/R2017a/sldv/ug/short-circuit-logic-operations-blocks.html
https://www.mathworks.com/help/releases/R2017a/sldv/ug/short-circuit-logic-operations-blocks.html

model parameter is set to 'on', Simulink Design Verifier analysis may produce different
results than those results from R2016b or earlier. To enforce the same Simulink Design
Verifier logic block short-circuiting analysis behavior as that before R2017a, set
CovLogicBlockShortCircuit to 'off'.

3-7

R2016b

Version: 3.2

New Features

Bug Fixes

4

Model Slicer for Stateflow: Highlight active states and
transitions for specified simulation time window
You can use Model Slicer to highlight active Stateflow states and transitions for a
specified simulation time window. See Highlight Functional Dependencies and Using
Model Slicer with Stateflow.

Model Slicer: Highlight unexpected behavior in test harnesses
created by Simulink Test
You can use Model Slicer to highlight functional dependencies in test harnesses created
by Simulink Test. See Highlight Functional Dependencies.

MCDC Test Generation: Generate tests from MCDC coverage
for cascaded Simulink logic blocks
Use Simulink Design Verifier to generate tests to satisfy MCDC coverage objectives for
models containing cascaded Simulink logic blocks if Treat Simulink logic blocks as short-
circuited is enabled. See Analyzing MCDC for Cascaded Logic Blocks, Logical Operator
Cascade Patterns, and Modified Condition and Decision Coverage in Simulink Design
Verifier.

Incremental Test Generation: Generate tests to increase
coverage for model objects in a test harness
Use Simulink Design Verifier to incrementally increase coverage for model objects in a
test harness. See Increase Coverage for Referenced Models in a Test Harness.

Dead Logic Detection: Precisely detect dead logic without
rational approximations
Improved precision of dead logic detection by removing approximation effects, such as
relational boundary effects.

R2016b

4-2

https://www.mathworks.com/help/releases/R2016b/sldv/ug/identify-model-interest-to-isolate-dependencies.html
https://www.mathworks.com/help/releases/R2016b/sldv/ug/using-model-slicer-with-stateflow.html
https://www.mathworks.com/help/releases/R2016b/sldv/ug/using-model-slicer-with-stateflow.html
https://www.mathworks.com/help/releases/R2016b/sldv/ug/identify-model-interest-to-isolate-dependencies.html
https://www.mathworks.com/help/releases/R2016b/slvnv/ug/specify-model-coverage-options.html#bstx626-26
https://www.mathworks.com/help/releases/R2016b/slvnv/ug/specify-model-coverage-options.html#bstx626-26
https://www.mathworks.com/help/releases/R2016b/slvnv/examples/analyzing-mcdc-for-cascaded-logic-blocks.html
https://www.mathworks.com/help/releases/R2016b/slvnv/examples/logical-operator-block-cascade-patterns.html
https://www.mathworks.com/help/releases/R2016b/slvnv/examples/logical-operator-block-cascade-patterns.html
https://www.mathworks.com/help/releases/R2016b/sldv/ug/modified-condition-and-decision-coverage-in-simulink-design-verifier.html
https://www.mathworks.com/help/releases/R2016b/sldv/ug/modified-condition-and-decision-coverage-in-simulink-design-verifier.html
https://www.mathworks.com/help/releases/R2016b/sldv/ug/achieve-missing-coverage-in-referenced-model.html#bvf8wwp-6

Detect Run-Time Errors in Supported S-Functions
When you run a design error detection analysis, Simulink Design Verifier supports the
following subset of run-time error detection for supported S-Functions:

• Division by zero
• Out of bound array, including invalid pointer access
• Dead logic detection

For more information, see What Is Design Error Detection? and Support Limitations for S-
Functions.

Generate Tests for Relational Boundary Code Coverage for
Supported S-Functions
When you generate tests for models with compatible S-Functions, Simulink Design
Verifier can create test cases for relational boundary objectives for the S-Functions. For
more information, see Configuring S-Function for Test Case Generation and Relational
Boundary.

Analyze Models that Contain Cell Arrays
Simulink Design Verifier supports analysis of models that contain cell arrays.

Detect Dead Logic Only without Floating-Point to Rational
Number Conversion Approximation or While Loop
Approximation
When you detect dead logic only, Simulink Design Verifier analyzes your model without
floating-point to rational number conversion approximation or while loop approximation.
For more information about the types of design error detection for dead logic in Simulink
Design Verifier, see Dead Logic Detection. For more information about approximations in
Simulink Design Verifier, see Approximations.

4-3

https://www.mathworks.com/help/releases/R2016b/sldv/ug/what-is-design-error-detection.html
https://www.mathworks.com/help/releases/R2016b/sldv/ug/support-limitations-for-s-functions.html
https://www.mathworks.com/help/releases/R2016b/sldv/ug/support-limitations-for-s-functions.html
https://www.mathworks.com/help/releases/R2016b/sldv/examples/configuring-s-function-for-test-case-generation.html
https://www.mathworks.com/help/releases/R2016b/sldv/ug/model-coverage-objectives-for-test-generation.html#buhygx0-38
https://www.mathworks.com/help/releases/R2016b/sldv/ug/model-coverage-objectives-for-test-generation.html#buhygx0-38
https://www.mathworks.com/help/releases/R2016b/sldv/ug/detect-dead-logic.html
https://www.mathworks.com/help/releases/R2016b/sldv/ug/approximations.html

R2016a

Version: 3.1

New Features

Bug Fixes

5

Test Generation: Automatically generate tests for C/C++ S-
Functions
Simulink Design Verifier generates tests for Decision, Condition, and MCDC objectives for
C/C++ code within S-Functions. For more information, see:

• Configuring S-Function for Test Case Generation
• Workflow for Test Case Generation

Model Slicer: Time window adjustment without the need to
rerun simulations
When you Refine Highlighted Model with Model Slicer, you can refine the slice highlight
time window without the need to resimulate the model.

Variant Reducer: Create sliced models based on active variant
configurations
You use the Variant Manager or Model Slicer to generate a simplified standalone model
including only selected variant configurations. For more information, see Simplification of
Variant Systems.

Overflow Detection: Automatically find overflow errors for
fixed-point types with nonstandard word length
Design error detection in Simulink Design Verifier supports fixed-point types with
nonstandard word length. For more information, see Detect Integer Overflow and
Division-by-Zero Errors.

Simulink Functions: Perform verification of models that
contain Simulink Functions
Simulink Design Verifier supports Simulink Functions.

R2016a

5-2

https://www.mathworks.com/help/releases/R2016a/sldv/examples/configuring-s-function-for-test-case-generation.html
https://www.mathworks.com/help/releases/R2016a/sldv/ug/workflow-for-test-case-generation.html
https://www.mathworks.com/help/releases/R2016a/sldv/ug/constrain-dependency-paths-in-a-highlighted-model.html
https://www.mathworks.com/help/releases/R2016a/sldv/ug/evaluation-and-simplification-of-inline-variants.html
https://www.mathworks.com/help/releases/R2016a/sldv/ug/evaluation-and-simplification-of-inline-variants.html
https://www.mathworks.com/help/releases/R2016a/sldv/ug/detect-integer-overflow-and-division-by-zero-errors.html
https://www.mathworks.com/help/releases/R2016a/sldv/ug/detect-integer-overflow-and-division-by-zero-errors.html

Report Generation: Generate analysis reports in PDF format
Simulink Design Verifier can generate a PDF report that contains detailed information
about the analysis results if you have Simulink Report Generator™. For more information,
see Simulink Design Verifier Reports.

Model Slicer: Slice by using nonzero start time for
simulation time window
When you Refine Highlighted Model with Model Slicer, you can use a nonzero start time
for the simulation time window.

Model Slicer: Support for root-level inports as starting points
for downstream highlighting
Model Slicer supports root-level inports as starting points for downstream highlighting.
Model Slicer now treats these root-level inports as nonvirtual blocks. For more
information, see Highlight Functional Dependencies.

5-3

https://www.mathworks.com/help/releases/R2016a/sldv/ug/simulink-design-verifier-reports.html
https://www.mathworks.com/help/releases/R2016a/sldv/ug/constrain-dependency-paths-in-a-highlighted-model.html
https://www.mathworks.com/help/releases/R2016a/sldv/ug/identify-model-interest-to-isolate-dependencies.html

R2015aSP1

Version: 2.8.1

Bug Fixes

6

R2015b

Version: 3.0

New Features

Bug Fixes

7

Analysis of C S-functions
Simulink Design Verifier provides the option to incorporate C S-function behavior for all
modes of analysis.

Model Slicer API
Simulink Design Verifier adds an API for programmatically analyzing functional
dependencies using Model Slicer.

Analyze minimum and maximum ranges specified for bus
elements
Simulink Design Verifier analysis considers minimum and maximum values specified for
bus elements in Simulink models. Minimum and maximum values specified for bus
elements in Stateflow charts are not considered. See “Specify Input Ranges for Bus
Elements”.

Model Advisor checks for design error detection
The Model Advisor includes additional Simulink Design Verifier design error detection
checks:

• Detect integer overflow
• Detect division by zero
• Detect out of bound array access
• Detect violation of minimum and maximum values

Test Generation Advisor improvements
Test Generation Advisor reduces batch component extraction time and adds the ability to
save results, reload results, and continue using previous analysis results.

Generate test inputs and export them to test cases in
Simulink Test
You can generate test inputs using Simulink Design Verifier analysis and export them to
test cases in Simulink Test. This option appears in the Simulink Design Verifier results

R2015b

7-2

dialog box. You can also generate test cases from Simulink Design Verifier analysis results
files. See “Export Test Cases to Simulink Test”.

Support for Discrete Filter Blocks and Discrete Transfer Fcn
Blocks
Simulink Design Verifier now supports Discrete Filter blocks and Discrete Transfer Fcn
blocks for all Reset Mode settings.

7-3

R2015a

Version: 2.8

New Features

Bug Fixes

8

Isolate important model content and reduce model complexity
based on design interests with Model Slicer
Model Slicer facilitates determining model block diagram dependencies, and generating
simplified models that maintain simulation behavior. You use Model Slicer to analyze your
model beginning with one or more starting points and an analysis direction. You can
exclude model items and signal paths, and consider simulation effects in your analysis.

Model Slicer highlights items that your starting points depend on, and/or the items that
depend on your starting points. You can generate a standalone, simplified model from
certain model highlights.

You can access the Model Slice Manager by selecting Design Verifier > Model Slicer.
See Model Simplification with Dependency Analysis.

Load results from previous Test Generation Advisor analysis
Test Generation Advisor loads the previous model analysis results after closing the
advisor window or the model.

“Parameter table” replaces “Parameter configuration table”
The table that you access in the Model Configuration Parameters dialog box, on the
Design Verifier > Parameters pane, is now called “Parameter table.” Use this table to
specify parameter value ranges or constraints. The function of the table has not changed.

R2015a

8-2

https://www.mathworks.com/help/releases/R2015a/sldv/functional-dependency-isolation.html

R2014b

Version: 2.7

New Features

Bug Fixes

Compatibility Considerations

9

Test generation for relational boundary values
Simulink Design Verifier generates tests that satisfy a relational boundary objective.

The relational boundary objective applies to blocks that have an explicit or implicit
relational operation. The objectives also apply to Stateflow transitions and MATLAB®
function blocks that contain a relational operation.

For these blocks, the tests check the relational operations with:

• Equal operand values. This part of relational boundary objective applies only if both
operands are integers or fixed-point numbers.

• Operand values that differ by a certain tolerance. This part of relational boundary
objective applies to all operands. For integer and fixed-point operands, the tolerance is
fixed. For floating-point operands, you can either use a predefined tolerance or specify
your own tolerance value.

For more information, see Design Verifier Pane: Test Generation.

Fast dead logic detection and Model Advisor check
Dead logic detection is optimized for faster performance. It is integrated with the Model
Advisor.

In releases prior to R2014b and after R2012b, design error detection included a single
analysis option to detect dead logic. This previous dead logic detection also reported
active logic.

Design error detection for dead logic now comprises two analysis options:

• Detection of dead logic only. Does not report active logic or undecided objectives.
Available in the Model Advisor and in the Configuration Parameters dialog box under
Design Verifier > Options > Design Error Detection.

• Detection of active logic. Runs concurrently with dead logic detection. In rare cases,
can also find additional dead logic. Available in the Configuration Parameters dialog
box under Design Verifier > Options > Design Error Detection.

By default, detection of active logic is turned off. However, if you have run dead logic
detection on a model using a previous release, when you load your model in the new
release, both detection of dead logic and active logic are turned on. Therefore, you have
the same results of dead logic detection as before.

R2014b

9-2

https://www.mathworks.com/help/releases/R2014b/sldv/ug/design-verifier-pane-test-generation.html

For more information, see:

• Detect Dead Logic Only
• Detect Dead and Active Logic

Analysis for arrays of buses, For Each block, and For Each
Subsystem block
Analysis supports arrays of buses.

Analysis supports For Each and For Each Subsystem blocks, with the following limitation:

• When For Each Subsystem contains one or more Simulink Design Verifier Test
Condition, Test Objective, Proof Assumption, or Proof Objective blocks, this block is
not supported.

Test Generation Advisor to guide component analysis
Test Generation Advisor runs preliminary analysis on your model. For each component, it
shows recommended Simulink Design Verifier options for test generation analysis. Test
Generation Advisor also reports the number and status of test objectives for each
component.

For each component, Test Generation Advisor reports one of the following statuses:

• Analyzable, meaning that you can use Simulink Design Verifier to analyze this
component.

• Complex, meaning that you can use Simulink Design Verifier to analyze this
component, but the analysis can be time-consuming. It is possible that the component
does not receive full coverage from generated tests. For more information, see
Sources of Model Complexity.

• Incompatible, meaning that this component is incompatible with Simulink Design
Verifier. For more information, see Check Model Compatibility.

To open Test Generation Advisor, from the Simulink Editor, select Analysis > Design
Verifier > Generate Tests > Advisor.

9-3

https://www.mathworks.com/help/releases/R2014b/sldv/ug/detect-dead-logic.html#buixn66
https://www.mathworks.com/help/releases/R2014b/sldv/ug/detect-dead-logic.html#buixn7i
https://www.mathworks.com/help/releases/R2014b/simulink/slref/foreach.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2014b/sldv/ref/testcondition.html
https://www.mathworks.com/help/releases/R2014b/sldv/ref/testcondition.html
https://www.mathworks.com/help/releases/R2014b/sldv/ref/testobjective.html
https://www.mathworks.com/help/releases/R2014b/sldv/ref/proofassumption.html
https://www.mathworks.com/help/releases/R2014b/sldv/ref/proofobjective.html
https://www.mathworks.com/help/releases/R2014b/sldv/ug/sources-of-model-complexity.html
https://www.mathworks.com/help/releases/R2014b/sldv/ug/check-model-compatibility.html

Improved test generation performance for lookup tables and
timers
Test generation analysis includes optimizations to improve performance for 1-D Lookup
Table and 2-D Lookup Table blocks. These optimizations are in effect for floating-point
lookup tables using linear interpolation.

R2014b

9-4

https://www.mathworks.com/help/releases/R2014b/simulink/slref/1dlookuptable.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/1dlookuptable.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/2dlookuptable.html

R2014a

Version: 2.6

New Features

Bug Fixes

10

Parameter Configuration Table for constraint specification and
management
You can use the Parameter Configuration Table to specify parameters to treat as variables
during analysis. Previously, you specified parameter configurations only with a MATLAB
code file.

Use the Parameter Configuration Table to:

• Autogenerate value ranges for parameters in your model.
• Enter your own value ranges for parameters in your model.
• Highlight objects in your model that have parameters configured to act as variables

during analysis.
• Import and export parameter configurations from MATLAB code files.

For more information, see Define Constraint Values for Parameters and Store Parameter
Constraints in MATLAB Code Files.

Compatibility check integrated with Model Advisor
You can check the compatibility of your model for Simulink Design Verifier analysis using
the Model Advisor. See Check compatibility with Simulink Design Verifier.

For more information on using the Model Advisor, see Consult the Model Advisor in the
Simulink documentation.

Condition coverage test generation for Relational Operator
blocks
Analysis supports test case generation for condition coverage for Relational Operator,
Compare to Constant, and Compare to Zero blocks. For more information, see Model
Objects That Receive Coverage in the Simulink Verification and Validation documentation.

For Each Subsystem block analysis
Analysis supports For Each and For Each Subsystem blocks, with the following
limitations:

R2014a

10-2

https://www.mathworks.com/help/releases/R2014a/sldv/ug/define-parameters-as-variables.html
https://www.mathworks.com/help/releases/R2014a/sldv/ug/store-parameter-constraints-in-matlab-code-files.html
https://www.mathworks.com/help/releases/R2014a/sldv/ug/store-parameter-constraints-in-matlab-code-files.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/simulink-design-verifier-checks.html#bt6artc
https://www.mathworks.com/help/releases/R2014a/simulink/ug/consulting-the-model-advisor.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/relationaloperator.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/comparetoconstant.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/comparetozero.html
https://www.mathworks.com/help/releases/R2014a/slvnv/ug/model-objects-that-receive-coverage.html
https://www.mathworks.com/help/releases/R2014a/slvnv/ug/model-objects-that-receive-coverage.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/foreach.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/foreachsubsystem.html

• When For Each Subsystem contains another For Each Subsystem, not supported.
• When For Each Subsystem contains one or more Simulink Design Verifier Test

Condition, Test Objective, Proof Assumption, or Proof Objective blocks, not supported.

Parameter handling for Simulink data dictionary
Analysis supports models with parameters stored in data dictionaries. For more
information, see What Is a Data Dictionary? in the Simulink documentation.

Japanese language localization support
Simulink Design Verifier is available in Japanese for Japanese localized systems. For more
information, see Internationalization.

10-3

https://www.mathworks.com/help/releases/R2014a/sldv/ref/testcondition.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/testcondition.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/testobjective.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/proofassumption.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/proofobjective.html
https://www.mathworks.com/help/releases/R2014a/simulink/ug/what-is-a-data-dictionary.html
https://www.mathworks.com/help/releases/R2014a/matlab/internationalization.html

R2013b

Version: 2.5

New Features

Bug Fixes

Compatibility Considerations

11

Highlighting of partial results in model during analysis for
visualizing progress
Before Simulink Design Verifier analysis on your model is complete, you can view its
progress. Seeing the analysis progress can help you identify components of your model
that take a longer time to analyze than others.

During analysis, in the Simulink Design Verifier log window, click Highlight to view the
analysis results. The Simulink Design Verifier Results window shows the elapsed time of
the analysis. Highlighting appears on model objects for which the analysis has begun. For
more information, see Highlighted Results on the Model.

Summarizing and highlighting of prior analysis results
You can load previously generated analysis results for a model. In the Simulink Editor,
select Analysis > Design Verifier > Results > Load to choose the data file with the
results of a previous analysis. The Simulink Design Verifier Results window opens with
options that you can use to explore the results. For more information, see Load Previous
Results.

You can also use the sldvloadresults and sldvhighlight functions to explore
previous analysis results for a model.

Performance improvements for test generation with input
constraints
For test case generation analysis, especially when using Nonlinear Extended test suite
optimizations, there are improved heuristics for handling input constraints defined using
the Test Condition block.

Analysis time information for objectives in results window,
report, and data file
The Simulink Design Verifier Results window, generated analysis reports, and data files
include information about time spent analyzing objectives.

R2013b

11-2

https://www.mathworks.com/help/releases/R2013b/sldv/ug/highlighted-results-on-the-model.html
https://www.mathworks.com/help/releases/R2013b/sldv/ug/review-analysis-results.html#bt1nea9
https://www.mathworks.com/help/releases/R2013b/sldv/ug/review-analysis-results.html#bt1nea9
https://www.mathworks.com/help/releases/R2013b/sldv/ref/sldvloadresults.html
https://www.mathworks.com/help/releases/R2013b/sldv/ref/sldvhighlight.html

Mac i64 support
Simulink Design Verifier supports the 64-bit Intel® Macintosh platform. For more
information, see System Requirements.

Improved while loop bound detection
If your model contains a while loop, Simulink Design Verifier tries to detect a
conservative constant bound that allows the while loop to exit. If the software cannot
find a constant bound, it performs a while loop approximation. With this approximation,
the analysis does not prove objectives to be valid or unsatisfiable and it does not prove
dead logic. The generated analysis report notes this approximation.

The behavior of the while loop approximation is consistent in all modes of analysis, as
described in the following table.

Analysis Mode While Loop Approximation
Design Error Detection Sets number of while loop iterations to 3.

Does not report dead logic or valid
objectives.

Test Case Generation Sets number of while loop iterations to 3.
Does not report unsatisfiable objectives.

Property Proving Sets number of while loop iterations to 3.
Does not report valid objectives.

Compatibility Considerations
In previous versions of Simulink Design Verifier, if the software did not detect a bound for
a while loop, it terminated the analysis or performed an approximation, as described in
the following table.

Analysis Mode While Loop Approximation (pre-
R2013b)

Design Error Detection Set number of while loop iterations to 3.
Test Case Generation Set number of while loop iterations to 3.
Property Proving Terminated analysis.

11-3

https://www.mathworks.com/products/sldesignverifier/requirements.html

This generated analysis report noted this approximation.

Internationalization support for Simulink Design Verifier
Options pane
Japanese internationalization is supported for the Simulink Design Verifier Options pane.
For more information, see Internationalization.

Additional status information for undecided objectives
Simulink Design Verifier reports objectives that the analysis was unable to decide because
of nonlinearities or division by zero. The software also reports objectives that the analysis
was unable to decide because of stubbing. Objectives that have status Undecided Due to
Stubbing can include objectives that, in releases prior to R2013b, were marked as
Satisfied – No Test Case or Falsified – No Counterexample. For more information, see
Objectives Undecided.

Example of property proving using Truth Table
The Property Proving Using MATLAB Truth Table Block example shows how to verify
safety properties using Simulink Design Verifier property proving analysis. The example
model uses sldv.prove and sldv.assume functions in a Truth Table block that uses
MATLAB as the action language.

To see this example, at the MATLAB command prompt, type:

sldvexSBRVerificationTruthTableExample

Continuous state-space block family not stubbable
The Continuous Simulink blocks State-Space, Transfer Fcn, and Zero-Pole are not
supported and not stubbable for Simulink Design Verifier analysis. For information on
blocks that are supported for Simulink Design Verifier analysis, see Simulink Block
Support.

Compatibility Considerations
If you have a model that contains one or more continuous State-Space, Transfer Fcn, or
Zero-Pole blocks, your model is incompatible with Simulink Design Verifier. Consider

R2013b

11-4

https://www.mathworks.com/help/releases/R2013b/matlab/internationalization.html
https://www.mathworks.com/help/releases/R2013b/sldv/ug/simulink-design-verifier-reports.html#bswumnq-1
https://www.mathworks.com/help/releases/R2013b/sldv/ref/sldv.prove.html
https://www.mathworks.com/help/releases/R2013b/sldv/ref/sldv.assume.html
https://www.mathworks.com/help/releases/R2013b/stateflow/ref/truthtable.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/statespace.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/transferfcn.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/zeropole.html
https://www.mathworks.com/help/releases/R2013b/sldv/ug/simulink-block-support.html
https://www.mathworks.com/help/releases/R2013b/sldv/ug/simulink-block-support.html

analyzing smaller portions of your model to work around this incompatibility, as described
in Extract Subsystems for Analysis.

11-5

https://www.mathworks.com/help/releases/R2013b/sldv/ug/extract-subsystems-for-analysis.html

R2013a

Version: 2.4

New Features

Bug Fixes

12

Detection of out-of-bound array access design errors
Before you simulate a model, you can use design error detection analysis to find out of
bound array access errors. To detect out of bound array access errors in your model, from
the Simulink Editor, select Analysis > Design Verifier > Options. In the Configuration
Parameters dialog box, on the Design Verifier > Design Error Detection pane, select
Out of bound array access. On the Design Verifier pane, click Detect Errors.

For more information, see Detect Out of Bound Array Access Errors.

R2013a

12-2

https://www.mathworks.com/help/releases/R2013a/sldv/ug/detect-out-of-bound-array-access-errors.html

R2012b

Version: 2.3

New Features

Bug Fixes

Compatibility Considerations

13

Support for Discrete Filter Blocks and Discrete Transfer Fcn
Blocks
Simulink Design Verifier now supports Discrete Filter blocks and Discrete Transfer Fcn
blocks if their Reset Mode is set to None. Discrete Filter blocks and Discrete Transfer
Fcn blocks with their Reset Mode set to any other option are not supported.

R2012b

13-2

R2012a

Version: 2.2

New Features

Bug Fixes

14

Design Error Detection For Dead Logic
You can now use design error detection to find dead logic in your model. Simulink Design
Verifier uses multiple analysis engines, including Polyspace® and Prover®, to identify the
dead logic. Previously, to uncover dead logic in your model, you had to analyze the results
of test case generation. To conduct design error detection analysis, in the Configuration
Parameters dialog box, on the Design Verifier > Design Error Detection pane, select
Dead Logic. See Detecting Dead Logic.

Filtering Model Objects From Model Coverage
Simulink Design Verifier now allows you to filter certain model objects from model
coverage during test case generation. The objects that you specify to exclude are stored
in an external file. In the Configuration Parameters dialog box, on the Design Verifier >
Test Generation pane, select Ignore objectives based on filter. In the Coverage filter
file field, enter the file name.

For more information about coverage filtering, see Excluding Model Objects From
Coverage in the Simulink Verification and Validation documentation.

Improved Property Proving For Look-Up Tables
Simulink Design Verifier now automatically optimizes property proving for Look-Up Table
blocks, improving performance.

R2012a

14-2

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/btbejup.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slvnv/ug/bstx524.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slvnv/ug/bstx524.html

R2011b+

Version: 2.1.1

New Features

Bug Fixes

15

sldvtimer Function Available For Generating Test Cases
In R2011b+, the sldvtimer function is available to identify, change, and display timer
optimizations. When generating test cases, you can use the function to:

• Identify where you can apply timer optimization in your model.
• Determine if Simulink Design Verifier applied timer optimizations during test

generation.
• Configure timer optimizations.

R2011b+

15-2

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvtimer.html

R2011b

Version: 2.1

New Features

Bug Fixes

Compatibility Considerations

16

Checking Specified Design Minimum and Maximum Values
If you have specified minimum and maximum values on your Simulink model, the
Simulink Design Verifier software can analyze your model to make sure that the
intermediate and output signals do not violate the specified values. If the analysis finds a
violation, the software creates a test case that demonstrates the violation.

This check is a new option for the design error detection analysis mode. For detailed
information, see Checking for Specified Intermediate Minimum and Maximum Signal
Values.

Improved Support for Trigonometric Functions
For a test case generation analysis, the CombinedObjectives (Nonlinear) and
LargeModel (Nonlinear Extended) test suite optimizations have improved support
for trigonometric and nonlinear math functions.

Improved Support for Large Lookup Tables
All the Simulink Design Verifier analysis modes have improved support for large lookup
tables.

Optimized Handling for Extending Existing Test Cases
Existing test cases are now represented in a more memory-efficient way internally in the
test generation engine. This improvement makes it possible to extend significantly longer
existing test cases with more time steps.

Support for Trigger and Enable Ports for Model Blocks
The Simulink Design Verifier software fully supports root-level Trigger and Enable ports
for referenced models.

Changed Format for sldvruntest and sldvruncgvtest Output
The output format for sldvruntest and sldvruncgvtest has changed in R2011b. In
R2011b, the output argument contains the following data for each test case executed in
an array of Simulink.SimulationOutput objects.

R2011b

16-2

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/bs256no-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/bs256no-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvruntest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvruncgvtest.html

Field Description
tout_sldvruncgvtest Simulation time
xout_sldvruncgvtest State data
yout_sldvruncgvtest Output signal data
logsout_sldvruncgvtest Signal logging data for:

• Signals that are connected to outports
• Signals that are configured for logging

on the model

Compatibility Considerations
If you have scripts that depend on the output from sldvruntest and sldvruncgvtest,
you can temporarily specify the output format. Use the nonvisible field outputFormat in
the runOpts structure that sldvruntestopts creates as follows:

runOpts = sldvruntestopts;
runOpts.outputFormat = 'TimeSeries';
sldvruntest(model_name, sldvData, runOpts);

or

runOpts = sldvruntestopts;
runOpts.outputFormat = 'StructureWithTime';
sldvruntest(model_name, sldvData, runOpts);

Conversion of Error and Warning Message Identifiers
For R2011b, error and warning message identifiers have changed in Simulink Design
Verifier.

Compatibility Considerations
If you have scripts or functions that use message identifiers that changed, you must
update the code to use the new identifiers. Typically, message identifiers are used to turn
off specific warning messages, or in code that uses a try/catch statement and performs
an action based on a specific error identifier.

16-3

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvruntestopts.html

For example, the SLDV:InvalidConfSet identifier has changed to
SLDV:configcomp_get:InvalidConfSetRef. If your code checks for
SLDV:InvalidConfSet, you must update it to check for
SLDV:configcomp_get:InvalidConfSetRef instead.

To determine the identifier for a warning, run the following command just after you see
the warning in the MATLAB command window:

[MSG,MSGID] = lastwarn;

This command saves the message identifier to the variable MSGID.

To determine the identifier for an error that appears at the MATLAB prompt, run the
following commands just after you see the error:

exception = MException.last;
MSGID = exception.identifier;

Note Warning messages indicate a potential issue with your code. While you can turn off
a warning, a suggested alternative is to change your code so it runs warning-free.

R2011b

16-4

R2011a

Version: 2.0

New Features

Bug Fixes

17

Automatic Detection of Overflow and Divide-by-Zero Design
Errors
If your Simulink model performs arithmetic operations, the Simulink Design Verifier
software can analyze the model to identify design errors that occur at run time. The
analysis detects two types of errors:

• Integer or fixed-point data overflow
• Division by zero

After the analysis is complete, you can create a harness model that includes test cases for
each error.

For more information, see Detecting Integer Overflow and Division-by-Zero Errors.

Improved Analysis Results Workflow
After you analyze a Simulink model using the Simulink Design Verifier software, you can
choose how you want to review the results. You have the following options:

• Highlight the analysis results on the model.
• Generate the detailed analysis report.
• Create the harness model with the generated test cases in the Signal Builder.
• Simulate the test cases and produce a model coverage report (test case generation

only).

Improved Support for Nonlinear Arithmetic and Math
Operations
The Simulink Design Verifier test-generation software includes improved support for
nonlinear arithmetic and math operations that:

• Improves test generation for models containing nonlinear operations.
• Improves support of math operations such as trigonometric functions.
• Improves scalability to very large models.

R2011a

17-2

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/bsuz1oq-1.html

To use these new strategies, in the Configuration Parameters dialog box, on the Design
Verifier > Test Generation pane, set the Test suite optimization parameter to one of
the following:

• CombinedObjectives (Nonlinear Extended)
• LargeModel (Nonlinear Extended)

New Capability to Highlight Analysis Results on the Model
When a Simulink Design Verifier analysis is complete, you can specify that the software
use color highlighting on the model to indicate the analysis results for individual objects.
When you click an object, you see the detailed results specific to that object.

You can generate a detailed analysis report or create a harness model that contains test
case signals at any time.

After you run a design error detection analysis, the model is highlighted by default. After
you run a test case generation or property-proving analysis, you can highlight the model.

For more information, see Highlighted Results on the Model.

New Capability to Review Model Analysis Results in Model
Explorer
If you close the Simulink Design Verifier analysis results so you can fix the causes of
problems in your model, you might need to review the analysis results again. As long as
your model remains open, you can view the results of your most recent analysis results in
the Model Explorer by selecting Tools > Design Verifier > Latest Results.

From the Model Explorer, you can:

• Highlight the analysis results on the model.
• Generate the detailed analysis report.
• Create the harness model with the generated test cases in the Signal Builder.
• Simulate the test cases and produce a model coverage report (test case generation

only).

For more information, see Reviewing Analysis Results in the Model Explorer.

17-3

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/bsu3fv7.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/bsxkxon-1.html

New Temporal Operator Blocks
The Simulink Design Verifier block library includes three new blocks that allow you to
define temporal properties on Boolean signals in your model:

• Detector — Detect true duration on input and construct output true duration based on
output type

• Extender — Extend true duration of input
• Within Implies — Capture within implication if observed input is true within each true

duration of first input

Support for Simulink Blocks
The Simulink Design Verifier software now supports the following Simulink blocks:

• Discrete Derivative
• Function-Call Feedback Latch (new block)
• Probe
• Rate Limiter Dynamic
• Trigonometric Function — Supported when Function is sin, cos, or sincos and

Approximation method is CORDIC.
• Variant Subsystem
• Weighted Sample Time
• Weighted Sample Time Math

R2011a

17-4

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/detector.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/extender.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/withinimplies.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretederivative.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/functioncallfeedbacklatch.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/probe.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ratelimiterdynamic.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/trigonometricfunction.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/variantsubsystem.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/weightedsampletime.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/weightedsampletimemath.html

R2010bSP1

Version: 1.7.1

Bug Fixes

18

R2010b

Version: 1.7

New Features

Bug Fixes

Compatibility Considerations

19

Support for 64-Bit Windows Operating Systems
The Simulink Design Verifier software can now execute in 64-bit mode on 64-bit
Windows® systems.

New Support for Specified Input Minimum and Maximum
Values as Analysis Constraints
The Simulink Design Verifier software can consider the specified minimum and maximum
values for input signals during a test case generation or property proving analysis. This
feature allows you to:

• Constrain the test cases based on the specified minimum and maximum values.
• Assume the specified minimum and maximum values during property-proving analysis.

New Built-In Support for Automating Test Execution in SIL/PIL
Mode via the CGV API
The new sldvruncgvtest function allows you to execute test cases in Software-in-the-
Loop (SIL) or Processor-in-the-Loop (PIL) mode using the Code Generation Verification
(CGV) API methods.

New Support for Extracting and Analyzing Stateflow Atomic
Subcharts
The Simulink Design Verifier software now provides support for Stateflow atomic
subcharts. Atomic subcharts make it easier to isolate parts of a Stateflow chart for
development and analysis.

The Simulink Design Verifier support for atomic subcharts allows you to:

• Generate test cases and prove properties for an atomic subchart in a Stateflow chart
within a Simulink model.

• Use sldvextract to extract the contents of an atomic subchart and create a model
for the Simulink Design Verifier software to analyze.

R2010b

19-2

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvruncgvtest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvextract.html

New Capability to Eliminate Unused Signals from the
Generated Harness
To improve the performance of harness model creation during a Simulink Design Verifier
analysis, from the Signal Builder block, the software can omit signals that have no effect
on the output of the model.

sldvmakeharness supports this capability if you set the usedSignalsOnly harness
model option to true.

Support for Simulink Blocks
The Simulink Design Verifier software now supports the following Simulink blocks:

• Dead Zone and Dead Zone Dynamic
• Lookup Table Dynamic
• Probe (Partial support)
• Width

sldvlogsignals Replaces sldvlogdata
The sldvlogsignals function replaces the sldvlogdata function. Use
sldvlogsignals to:

• Simulate a Simulink model and in that model, log all the inputs to a specified Model
block.

• Simulate all or some of the test cases in a harness model created by:

• Simulink Design Verifier analysis
• sldvmakeharness
• slvnvmakeharness

Compatibility Considerations
The sldvlogsignals function replaces the sldvlogdata function. Currently, if you use
the sldvlogdata function, it automatically redirects to sldvlogsignals. Update your
scripts to use sldvlogsignals.

19-3

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvmakeharness.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/deadzone.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/deadzonedynamic.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/lookuptabledynamic.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/probe.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/width.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvlogsignals.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvmakeharness.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slvnv/ref/slvnvmakeharness.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvlogsignals.html

sldvmergeharness Replaces sldvharnessmerge
The sldvmergeharness function replaces the sldvharnessmerge function.
sldvmergeharness combines the test cases and initializations from any specified
harness models into a single harness model.

Compatibility Considerations
Currently, if you use the sldvharnessmerge function, it automatically redirects to
sldvmergeharness. Update your scripts to use sldvmergeharness.

R2010b

19-4

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvmergeharness.html

R2010a

Version: 1.6

New Features

Bug Fixes

20

Generate Test Cases for Missing Coverage Data
The Simulink Design Verifier software now offers the option to isolate test generation to
objectives that are not satisfied in simulation coverage results. If you simulate your
model, but do not achieve 100% coverage, you can analyze the model using the Simulink
Design Verifier test-generation capability to find test cases that achieve the missing
coverage.

If you select the Ignore objectives satisfied in existing coverage data parameter in
the Configuration Parameters dialog box, you can import the coverage data file; the
analysis eliminates all objectives satisfied in the coverage results.

sldvlogdata Function for Logging Test Cases During
Simulation
With the new sldvlogdatafunction, you can:

• Simulate a Simulink model and in that model, log all the inputs to a Model block.
• Simulate all or some of the test cases in a harness model created by the Simulink

Design Verifier software and log all the inputs to the test unit.

You can save logged data to a MAT-file and use that file as input to the Simulink Design
Verifier software for extending tests. This allows you to generate more realistic test cases
and extends the analysis to complete the test suite.

Extend Existing Test Cases
The Simulink Design Verifier software now offers the option to extend existing test cases
with additional time steps to generate complete test suites. This allows the software to
generate test cases for parts of your model that are hard to analyze.

If you enable the Extend existing test cases parameter in the Configuration Parameters
dialog box, the software imports the logged test cases from a MAT-file. If you also enable
the Ignore objectives satisfied by existing test cases parameter, the analysis
generates results, ignoring the coverage objectives satisfied by the logged test cases.
Otherwise, the analysis efficiently creates a complete test suite.

R2010a

20-2

Demo Library and Models to Support Temporal Properties
Specification
The Simulink Design Verifier software includes a new Temporal Property Specification
demo category that includes:

• A Temporal Operator Blocks demo library that contains the following blocks and
examples:

• Detector — Detects a user-specified length of true duration on the input signal and
constructs an output true duration of length based on the output type.

• Extender — Extends the true duration of the input signal by a fixed number of time
steps or indefinitely.

• Within Implies — Captures the within implication by observing whether the second
input is true for at least one time step within each true duration of the first input.

• Temporal Property Specification examples — A library model that includes
examples that use the Detector, Extender, and Within Implies blocks

• Two demo models that contain these blocks:

• Debounce Temporal Properties
• Power Window Controller Temporal Properties

Support for Stateflow Absolute-Time Temporal Logic Operators
The Simulink Design Verifier software now supports the Stateflow absolute-time temporal
logic operators. For more information, see Operators for Absolute-Time Temporal Logic in
the Stateflow documentation.

Support for Simulink Blocks
The Simulink Design Verifier software now fully supports the following blocks:

• Backlash
• Cosine
• Discrete Derivative
• Sine

20-3

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-34084.html#brh78e8
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/backlash.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/cosine.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretederivative.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sine.html

The Simulink Design Verifier software now provides improved support for the following
blocks:

• Interpolation Using Prelookup
• Lookup Table (n-D)

For more information, see Simulink Block Support.

R2010a

20-4

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/bq0u0j7-1.html

R2009bSP1

Version: 1.5.1

Bug Fixes

21

R2009b

Version: 1.5

New Features

Bug Fixes

Compatibility Considerations

22

New Functions for Verification Objectives and Constraints
Use these four new functions to specify objectives and constraints within an Embedded
MATLAB® script. You can use these functions instead of the corresponding Simulink
Design Verifier blocks.

Function Purpose Corresponding Block
sldv.assume Proof assumption Proof Assumption
sldv.condition Test condition Test Condition
sldv.prove Proof objective Proof Objective
sldv.test Test objective Test Objective

These functions:

• Identify mathematical relationships for objectives and constraints in a form that can
be more natural than using block parameters

• Support specifying multiple constraints without complicating the model
• Provide access to the power of the MATLAB software
• Support separation of verification and model design

Compatibility Considerations
The following functions will be removed in a future release:

• dv.assume
• dv.condition
• dv.prove
• dv.test

So that your models with those functions will work in future releases, replace these
functions with the corresponding new function added in this release. For example, replace
dv.assume with sldv.assume.

R2009b

22-2

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldv.assume.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/proofassumption.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldv.condition.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/testcondition.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldv.prove.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/proofobjective.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldv.test.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/testobjective.html

Support for Enumerated Signals and Parameters
The Simulink Design Verifier software now supports Simulink models with enumerations.
All the Simulink Design Verifier library blocks support enumerated parameters, constants,
and inputs.

New Option to Stop Simulation on Proof Violation
The Simulink Design Verifier software allows you to stop a model simulation if it
encounters a property violation. You enable this capability by inserting a Proof Objective
block into a model and setting the Stop simulation when the property is violated
parameter. If the simulation detects a violation of the property specified in the Proof
Objective block, it terminates with an error.

Therefore, you can now verify a counterexample that was detected during a Simulink
Design Verifier analysis.

New sldvmakeharness Function
With the new sldvmakeharness function, you can:

• Create a test harness model from existing Simulink Design Verifier analysis data.
• Create an empty test harness model directly from a Simulink model.

New sldvreport Function
You can now generate and customize a report from existing Simulink Design Verifier
analysis data with the new sldvreport function.

New Support for Simulink Blocks
The Simulink Design Verifier software now supports the following blocks and parameters:

• Direct Lookup Table (n-D)
• Discrete Transfer Fcn
• Lookup Table and Lookup Table (2-D) — Except when the Lookup method block

parameter specifies Interpolation-Extrapolation and the block's input and
output signals do not have the same floating-point data type.

22-3

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvmakeharness.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ref/sldvreport.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/directlookuptablend.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetransferfcn.html

• Math Function — All signal types now support the hermitian and transpose
function parameter settings

• Rate Limiter — For signals of all data types
• Shift Arithmetic — For all parameters and signals of all data types
• Tapped Delay
• Transfer Fcn Direct Form II
• Transfer Fcn Direct Form II Time Varying

Support for New Blocks
The Simulink Design Verifier software supports the following new Simulink blocks:

• Discrete PID Controller
• Discrete PID Controller (2 DOF)
• Enumerated Constant

R2009b

22-4

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ratelimiter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/shiftarithmetic.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/tappeddelay.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcndirectformii.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcndirectformiitimevarying.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller2dof.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/enumeratedconstant.html

R2009a

Version: 1.4

New Features

Bug Fixes

23

Automatic Stubbing for Unsupported Operations
Automatic stubbing allows you to complete a test-generation or property-proving analysis
even if the model contains blocks or functions that the Simulink Design Verifier software
does not support, like S-functions and C math operations.

By default, this feature is unavailable. To enable automatic stubbing before running an
analysis, on the Configuration Parameters Design Verifier main pane, select Automatic
stubbing of unsupported blocks and functions. In addition, if the compatibility check
finds unsupported blocks that automatic stubbing can handle, you can enable automatic
stubbing at that time.

Long Test Case Optimization
Long test cases is a new option for the Test suite optimization parameter. The Long
test cases option instructs the Simulink Design Verifier software to create fewer but
longer test cases that each satisfy multiple test objectives. With this option, you can
customize the analysis results, run a more efficient analysis, and create easier-to-review
results, in both Signal Builder and in the HTML report that the software generates.

New Support for Blocks
The Simulink Design Verifier software now supports models containing the following
blocks:

• Combinatorial Logic
• Decrement Time To Zero
• Discrete Filter
• Fixed-Point State-Space
• Integer Delay
• Model blocks that reference other models
• Prelookup
• Relay

R2009a

23-2

Analyzing External Functions for Embedded MATLAB Function
Blocks
If your model contains an Embedded MATLAB Function block that calls any external
functions, the Simulink Design Verifier software can now accumulate coverage results for
those functions.

Enhanced Block Replacement Capability for Subsystems and
Model Blocks
You can write your own replacement rules to replace subsystem or Model blocks that
reference another model with the Simulink Design Verifier block replacement capability.
The software replaces a subsystem or Model block with a different subsystem or with a
built-in block as defined in the block replacement rules.

New Implies Block
The new Implies block simplifies property specification. You can now specify conditions
that produce a given response. For example, you can quickly create expressions
indicating that pressing the brake pedal implies the cruise control must be inactive.

You can use the Implies block in any model, not just when running the Simulink Design
Verifier software.

New Property-Proving Examples and Demos
The Simulink Design Verifier block library includes four new example models that
demonstrate how to define complex properties for property-proving analysis.

In addition, the following demo models are shipping with R2009a:

• sldvdemo_sbr_design.mdl — Finding property violations
• sldvdemo_sbr_verification.mdl — Proving that properties are valid
• sldvdemo_thrustrvs_verification.mdl — Analyzing model and properties to

prove correctness or to identify counterexamples
• sldvdemo_cruise_control_fxp_verification.mdl — Proving properties for
fixed-point arithmetic with block replacements

23-3

• sldvdemo_cruise_control_verification.mdl — Supporting model reference
and verification subsystems

sldvisactive Function
The sldvisactive function checks whether the Simulink Design Verifier software is
actively translating the model. This function is called from the masked initialization of
masked subsystems and other model or block callbacks to configure the model for
Simulink Design Verifier analysis.

For example, the mask initialization of the Environment Controller block invokes the
sldvisactive function to output the signal at its Sim port when you start analyzing a
model that contains the block.

R2009a

23-4

R2008b

Version: 1.3

New Features

Bug Fixes

Compatibility Considerations

24

Simulink Bus Signals and Bus Objects Support
Simulink Design Verifier now supports Simulink buses and bus objects:

• The root Inport and Outport blocks accept bus signals.
• Nonvirtual buses are propagated through the model elements.
• The test harness model reconstructs the bus signals from the underlying bus elements.

Fixed-Point Data Support
Simulink Design Verifier blocks now support fixed-point parameters and inputs. These
blocks include:

• Test Condition
• Test Objective
• Assumption
• Proof Objective

The Slvd.Point and Sldv.Interval constructors now accept fixed-point data.

Generating Test Harness Model with Model Reference
To use this option, select Reference input model in generated harness in the Design
Verifier > Results pane of the Configuration Parameters dialog box. Simulink Design
Verifier software then uses model reference to run the original model from the test
harness.

Generating SystemTest TEST-File
To use this option, select Save test harness as SystemTest TEST-File in the Design
Verifier > Results pane of the Configuration Parameters dialog box. The software
creates a TEST-file instead of a test harness model. Using a TEST-file allows you to run the
test cases in the SystemTest™ environment and configure the model coverage settings
using the SystemTest software.

R2008b

24-2

Improved Search Algorithms
This release includes search algorithms for the following two modes that improve the
performance and the quality of the results:

• Test case generation — The combined objectives options minimizes the number of test
cases by generating cases that address more than one test objective.

• Property proving — Proving that model properties are valid.

New Data File Format
When the Simulink Design Verifier software completes an analysis, it creates a data file.
Now the data file supports bus input ports and includes more information about the
analyzed model. For more information, see Simulink Design Verifier Data Files in the
Simulink Design Verifier documentation.

Compatibility Considerations
To convert an sldvData structure from the old format to the new format, use the
Sldv.DataUtils.convertToCurrentFormat utility with the following syntax:
new_sldvData = Sldv.DataUtils.convertToCurrentFormat(model, old_sldvData)

The arguments used for this conversion comprise:

• model — The name of the model that was analyzed
• old_sldvData — The name of an sldvData structure created using the old (pre-

R2008b) format

To convert an sldvData structure in the new format to the old format, use the
Sldv.DataUtils.convertToOldFormat utility with the following syntax:
old_sldvData = Sldv.DataUtils.convertToOldFormat(model, new_sldvData)

The arguments used for this conversion comprise:

• model — The name of the model that was analyzed
• new_sldvData — The name of an sldvData structure created using the format that

is new with R2008b

24-3

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/brrzinn-1.html

New HTML Report
The HTML report that Simulink Design Verifier software generates has been enhanced.
Now, when you select Generate report of the results in the Design Verifier > Report
pane of the Configuration Parameters dialog box, the report generated has several
improvements:

• The report generates faster and is easier to understand.
• The report can display expected outputs.
• The software generates a report that reflect the analysis settings (for example, test

case generation vs. property proving).

Blocks with No Input Ports Limitation
If a Simulink model has any blocks with no input ports, Simulink Design Verifier software
cannot generate the test harness.

R2008b

24-4

R2008a+

Version: 1.2.1

Bug Fixes

25

R2008a

Version: 1.2

New Features

Bug Fixes

26

Embedded MATLAB Subset Support
This release provides support for the Embedded MATLAB Function block in the Simulink
software and Embedded MATLAB functions in the Stateflow software. For more
information, see Support Limitations for MATLAB for Code Generation in the Simulink
Design Verifier User's Guide.

Enhanced Support for Stateflow Truth Tables
Previous releases support only the Stateflow Classic truth tables. However, this release
introduces support for Embedded MATLAB truth tables in the Stateflow software, which
includes support for the Truth Table block. See Truth Table Functions for Decision-
Making Logic in the Stateflow documentation for more information.

New Simulink Design Verifier Data File Options
This release introduces new options on the Design Verifier > Results pane of the
Configuration Parameters dialog box:

• Include expected output values — Simulates the model using the test case signals
and includes the output values in the Simulink Design Verifier data file.

• Randomize data that does not affect outcome — Assigns random values instead of
zeros to input signals that have no impact on test or proof objectives.

New Test Suite Optimization Setting
In this release, the Test suite optimization parameter that appears on the Design
Verifier > Test Generation pane of the Configuration Parameters dialog box includes a
new setting: Large model. This test generation strategy is tailored to large, complex
models that contain nonlinearities and many test objectives.

R2008a

26-2

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/briyumc-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/bq98p2v.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/bq98p2v.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f32-6010.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f32-6010.html

R2007b+

Version: 1.1.1

Bug Fixes

27

R2007b

Version: 1.1

New Features

Bug Fixes

28

Fixed-Point Data Type Support
This release provides support for fixed-point data types. For more information, see Fixed-
Point Support Limitations in the Simulink Design Verifier User's Guide.

R2007b

28-2

https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/brb6yc0.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/brb6yc0.html
https://www.mathworks.com/help/releases/R2012a/toolbox/sldv/ug/bq98p2v.html

R2007a+

Version: 1.0

New Features

29

Introducing the Simulink Design Verifier Software
The Simulink Design Verifier software extends the Simulink and Stateflow products with
formal methods that help you confirm your model and chart behavior. The Simulink
Design Verifier software performs a mathematically rigorous analysis of your model to
identify all of its possible execution pathways. Subsequently, the software can

• Generate Tests

The Simulink Design Verifier software can generate tests that satisfy your model's
coverage objectives, including decision coverage, condition coverage, and modified
condition/decision coverage (MCDC). You can even customize the tests that it
generates by using Simulink Design Verifier blocks that allow you to specify your own
objectives and to constrain signal values. After the software completes its analysis, it
produces a test harness model with a Signal Builder block that contains test signals.
Simply simulate the test harness model to confirm that the test signals achieve your
model's objectives.

• Prove Properties

The Simulink Design Verifier software can prove that signals in your model attain
particular values or ranges. Use Simulink Design Verifier blocks to specify values and
ranges that you desire signals to attain, or to constrain the values of other signals. If
the software disproves any of the values or ranges given the constraints you specify, it
produces a test harness model with a Signal Builder block that contains signals
comprising counterexamples. Simply simulate the test harness model to confirm that
the counterexamples falsify your model's properties.

The Simulink Design Verifier software documents its analysis results in an HTML report.
Also, it produces a data file containing the analysis results, which you can postprocess for
your own analyses and reports.

In short, the Simulink Design Verifier software gives you confidence in the behavior of
your Simulink models and Stateflow charts.

Version 1.0 of the Simulink Design Verifier software was released in a Web-downloadable
form after R2007a.

R2007a+

29-2

